Sample Code
Windows Driver Samples/ Microsoft slate system virtual audio device driver sample/ C++/ SlateAudioSample/ micarraytopo.cpp/
/*++ Copyright (c) Microsoft Corporation All Rights Reserved Module Name: micarraytopo.cpp Abstract: Implementation of topology miniport for the mic array. --*/ #pragma warning (disable : 4127) #include <sysvad.h> #include "simple.h" #include "micarraytopo.h" #include "micarray1toptable.h" #include "micarray2toptable.h" #include "micarray3toptable.h" #pragma code_seg("PAGE") //============================================================================= NTSTATUS CreateMicArrayMiniportTopology ( _Out_ PUNKNOWN * Unknown, _In_ REFCLSID, _In_opt_ PUNKNOWN UnknownOuter, _When_((PoolType & NonPagedPoolMustSucceed) != 0, __drv_reportError("Must succeed pool allocations are forbidden. " "Allocation failures cause a system crash")) _In_ POOL_TYPE PoolType, _In_ PUNKNOWN UnknownAdapter, _In_opt_ PVOID DeviceContext, _In_ PENDPOINT_MINIPAIR MiniportPair ) /*++ Routine Description: Creates a new topology miniport. Arguments: Unknown - RefclsId - UnknownOuter - PoolType - UnknownAdapter - DeviceContext - MiniportPair - Return Value: NT status code. --*/ { PAGED_CODE(); ASSERT(Unknown); ASSERT(MiniportPair); UNREFERENCED_PARAMETER(UnknownAdapter); UNREFERENCED_PARAMETER(DeviceContext); CMicArrayMiniportTopology *obj = new (PoolType, MINTOPORT_POOLTAG) CMicArrayMiniportTopology( UnknownOuter, MiniportPair->TopoDescriptor, MiniportPair->DeviceMaxChannels, MiniportPair->DeviceType ); if (NULL == obj) { return STATUS_INSUFFICIENT_RESOURCES; } obj->AddRef(); *Unknown = reinterpret_cast<IUnknown*>(obj); return STATUS_SUCCESS; } // CreateMicArrayMiniportTopology //============================================================================= CMicArrayMiniportTopology::~CMicArrayMiniportTopology ( void ) /*++ Routine Description: Topology miniport destructor Arguments: Return Value: NT status code. --*/ { PAGED_CODE(); DPF_ENTER(("[CMicArrayMiniportTopology::~CMicArrayMiniportTopology]")); } // ~CMicArrayMiniportTopology //============================================================================= NTSTATUS CMicArrayMiniportTopology::DataRangeIntersection ( _In_ ULONG PinId, _In_ PKSDATARANGE ClientDataRange, _In_ PKSDATARANGE MyDataRange, _In_ ULONG OutputBufferLength, _Out_writes_bytes_to_opt_(OutputBufferLength, *ResultantFormatLength) PVOID ResultantFormat OPTIONAL, _Out_ PULONG ResultantFormatLength ) /*++ Routine Description: The DataRangeIntersection function determines the highest quality intersection of two data ranges. Arguments: PinId - Pin for which data intersection is being determined. ClientDataRange - Pointer to KSDATARANGE structure which contains the data range submitted by client in the data range intersection property request. MyDataRange - Pin's data range to be compared with client's data range. OutputBufferLength - Size of the buffer pointed to by the resultant format parameter. ResultantFormat - Pointer to value where the resultant format should be returned. ResultantFormatLength - Actual length of the resultant format that is placed at ResultantFormat. This should be less than or equal to OutputBufferLength. Return Value: NT status code. --*/ { PAGED_CODE(); return CMiniportTopologySYSVAD::DataRangeIntersection ( PinId, ClientDataRange, MyDataRange, OutputBufferLength, ResultantFormat, ResultantFormatLength ); } // DataRangeIntersection //============================================================================= STDMETHODIMP CMicArrayMiniportTopology::GetDescription ( _Out_ PPCFILTER_DESCRIPTOR * OutFilterDescriptor ) /*++ Routine Description: The GetDescription function gets a pointer to a filter description. It provides a location to deposit a pointer in miniport's description structure. This is the placeholder for the FromNode or ToNode fields in connections which describe connections to the filter's pins. Arguments: OutFilterDescriptor - Pointer to the filter description. Return Value: NT status code. --*/ { PAGED_CODE(); ASSERT(OutFilterDescriptor); return CMiniportTopologySYSVAD::GetDescription(OutFilterDescriptor); } // GetDescription //============================================================================= STDMETHODIMP CMicArrayMiniportTopology::Init ( _In_ PUNKNOWN UnknownAdapter, _In_ PRESOURCELIST ResourceList, _In_ PPORTTOPOLOGY Port_ ) /*++ Routine Description: The Init function initializes the miniport. Callers of this function should run at IRQL PASSIVE_LEVEL Arguments: UnknownAdapter - A pointer to the IUnknown interface of the adapter object. ResourceList - Pointer to the resource list to be supplied to the miniport during initialization. The port driver is free to examine the contents of the ResourceList. The port driver will not be modify the ResourceList contents. Port - Pointer to the topology port object that is linked with this miniport. Return Value: NT status code. --*/ { UNREFERENCED_PARAMETER(ResourceList); PAGED_CODE(); ASSERT(UnknownAdapter); ASSERT(Port_); DPF_ENTER(("[CMicArrayMiniportTopology::Init]")); NTSTATUS ntStatus; ntStatus = CMiniportTopologySYSVAD::Init ( UnknownAdapter, Port_ ); return ntStatus; } // Init //============================================================================= STDMETHODIMP CMicArrayMiniportTopology::NonDelegatingQueryInterface ( _In_ REFIID Interface, _COM_Outptr_ PVOID * Object ) /*++ Routine Description: QueryInterface for MiniportTopology Arguments: Interface - GUID of the interface Object - interface object to be returned. Return Value: NT status code. --*/ { PAGED_CODE(); ASSERT(Object); if (IsEqualGUIDAligned(Interface, IID_IUnknown)) { *Object = PVOID(PUNKNOWN(this)); } else if (IsEqualGUIDAligned(Interface, IID_IMiniport)) { *Object = PVOID(PMINIPORT(this)); } else if (IsEqualGUIDAligned(Interface, IID_IMiniportTopology)) { *Object = PVOID(PMINIPORTTOPOLOGY(this)); } else { *Object = NULL; } if (*Object) { // We reference the interface for the caller. PUNKNOWN(*Object)->AddRef(); return(STATUS_SUCCESS); } return(STATUS_INVALID_PARAMETER); } // NonDelegatingQueryInterface //============================================================================= NTSTATUS CMicArrayMiniportTopology::PropertyHandlerMicArrayGeometry ( _In_ PPCPROPERTY_REQUEST PropertyRequest ) /*++ Routine Description: Handles ( KSPROPSETID_Audio, KSPROPERTY_AUDIO_MIC_ARRAY_GEOMETRY ) Arguments: PropertyRequest - Return Value: NT status code. --*/ { PAGED_CODE(); ASSERT(PropertyRequest); DPF_ENTER(("[PropertyHandlerMicArrayGeometry]")); NTSTATUS ntStatus = STATUS_INVALID_DEVICE_REQUEST; ULONG nPinId = (ULONG)-1; if (PropertyRequest->InstanceSize >= sizeof(ULONG)) { nPinId = *(PULONG(PropertyRequest->Instance)); if (nPinId == KSPIN_TOPO_MIC_ELEMENTS) { if (PropertyRequest->Verb & KSPROPERTY_TYPE_BASICSUPPORT) { ntStatus = PropertyHandler_BasicSupport ( PropertyRequest, KSPROPERTY_TYPE_BASICSUPPORT | KSPROPERTY_TYPE_GET, VT_ILLEGAL ); } else { ULONG cElements = IsCombined()? 4 : 2; ULONG cbNeeded = FIELD_OFFSET(KSAUDIO_MIC_ARRAY_GEOMETRY, KsMicCoord) + cElements * sizeof(KSAUDIO_MICROPHONE_COORDINATES); if (PropertyRequest->ValueSize == 0) { PropertyRequest->ValueSize = cbNeeded; ntStatus = STATUS_BUFFER_OVERFLOW; } else if (PropertyRequest->ValueSize < cbNeeded) { ntStatus = STATUS_BUFFER_TOO_SMALL; } else { if (PropertyRequest->Verb & KSPROPERTY_TYPE_GET) { PKSAUDIO_MIC_ARRAY_GEOMETRY pMAG = (PKSAUDIO_MIC_ARRAY_GEOMETRY)PropertyRequest->Value; const SHORT MicArray_180_Degrees = 31416; // 10000 * pi const SHORT MicArray_45_Degrees = 7854; // 10000 * pi / 4 if (IsFront()) { // fill in mic array geometry fields pMAG->usVersion = 0x0100; // Version of Mic array specification (0x0100) pMAG->usMicArrayType = (USHORT)KSMICARRAY_MICARRAYTYPE_LINEAR; // Type of Mic Array pMAG->wVerticalAngleBegin = -MicArray_45_Degrees; // Work Volume Vertical Angle Begin pMAG->wVerticalAngleEnd = MicArray_45_Degrees; // Work Volume Vertical Angle End pMAG->wHorizontalAngleBegin = 0; // Work Volume HorizontalAngle Begin pMAG->wHorizontalAngleEnd = 0; // Work Volume HorizontalAngle End pMAG->usFrequencyBandLo = 100; // Low end of Freq Range pMAG->usFrequencyBandHi = 8000; // High end of Freq Range pMAG->usNumberOfMicrophones = 2; // Count of microphone coordinate structures to follow. pMAG->KsMicCoord[0].usType = (USHORT)KSMICARRAY_MICTYPE_CARDIOID; pMAG->KsMicCoord[0].wXCoord = 0; pMAG->KsMicCoord[0].wYCoord = -100; // mic elements are 200 mm apart pMAG->KsMicCoord[0].wZCoord = 0; pMAG->KsMicCoord[0].wVerticalAngle = 0; pMAG->KsMicCoord[0].wHorizontalAngle = 0; pMAG->KsMicCoord[1].usType = (USHORT)KSMICARRAY_MICTYPE_CARDIOID; pMAG->KsMicCoord[1].wXCoord = 0; pMAG->KsMicCoord[1].wYCoord = 100; // mic elements are 200 mm apart pMAG->KsMicCoord[1].wZCoord = 0; pMAG->KsMicCoord[1].wVerticalAngle = 0; pMAG->KsMicCoord[1].wHorizontalAngle = 0; } else if (IsBack()) // in this sample the geometries for front and back are the same. { // fill in mic array geometry fields pMAG->usVersion = 0x0100; // Version of Mic array specification (0x0100) pMAG->usMicArrayType = (USHORT)KSMICARRAY_MICARRAYTYPE_LINEAR; // Type of Mic Array pMAG->wVerticalAngleBegin = -MicArray_45_Degrees; // Work Volume Vertical Angle Begin pMAG->wVerticalAngleEnd = MicArray_45_Degrees; // Work Volume Vertical Angle End pMAG->wHorizontalAngleBegin = 0; // Work Volume HorizontalAngle Begin pMAG->wHorizontalAngleEnd = 0; // Work Volume HorizontalAngle End pMAG->usFrequencyBandLo = 100; // Low end of Freq Range pMAG->usFrequencyBandHi = 8000; // High end of Freq Range pMAG->usNumberOfMicrophones = 2; // Count of microphone coordinate structures to follow. pMAG->KsMicCoord[0].usType = (USHORT)KSMICARRAY_MICTYPE_CARDIOID; pMAG->KsMicCoord[0].wXCoord = 0; pMAG->KsMicCoord[0].wYCoord = -100; // mic elements are 200 mm apart pMAG->KsMicCoord[0].wZCoord = 0; pMAG->KsMicCoord[0].wVerticalAngle = 0; pMAG->KsMicCoord[0].wHorizontalAngle = 0; pMAG->KsMicCoord[1].usType = (USHORT)KSMICARRAY_MICTYPE_CARDIOID; pMAG->KsMicCoord[1].wXCoord = 0; pMAG->KsMicCoord[1].wYCoord = 100; // mic elements are 200 mm apart pMAG->KsMicCoord[1].wZCoord = 0; pMAG->KsMicCoord[1].wVerticalAngle = 0; pMAG->KsMicCoord[1].wHorizontalAngle = 0; } else { // fill in mic array geometry fields pMAG->usVersion = 0x0100; // Version of Mic array specification (0x0100) pMAG->usMicArrayType = (USHORT)KSMICARRAY_MICARRAYTYPE_LINEAR; // Type of Mic Array pMAG->wVerticalAngleBegin = -MicArray_45_Degrees; // Work Volume Vertical Angle Begin pMAG->wVerticalAngleEnd = MicArray_45_Degrees; // Work Volume Vertical Angle End pMAG->wHorizontalAngleBegin = -MicArray_180_Degrees; // Work Volume HorizontalAngle Begin pMAG->wHorizontalAngleEnd = MicArray_180_Degrees; // Work Volume HorizontalAngle End pMAG->usFrequencyBandLo = 100; // Low end of Freq Range pMAG->usFrequencyBandHi = 8000; // High end of Freq Range pMAG->usNumberOfMicrophones = 4; // Count of microphone coordinate structures to follow. // front elements pMAG->KsMicCoord[0].usType = (USHORT)KSMICARRAY_MICTYPE_CARDIOID; pMAG->KsMicCoord[0].wXCoord = 0; pMAG->KsMicCoord[0].wYCoord = -100; // mic elements are 200 mm apart pMAG->KsMicCoord[0].wZCoord = 0; pMAG->KsMicCoord[0].wVerticalAngle = 0; pMAG->KsMicCoord[0].wHorizontalAngle = 0; pMAG->KsMicCoord[1].usType = (USHORT)KSMICARRAY_MICTYPE_CARDIOID; pMAG->KsMicCoord[1].wXCoord = 0; pMAG->KsMicCoord[1].wYCoord = 100; // mic elements are 200 mm apart pMAG->KsMicCoord[1].wZCoord = 0; pMAG->KsMicCoord[1].wVerticalAngle = 0; pMAG->KsMicCoord[1].wHorizontalAngle = 0; // back elements pMAG->KsMicCoord[2].usType = (USHORT)KSMICARRAY_MICTYPE_CARDIOID; pMAG->KsMicCoord[2].wXCoord = 0; pMAG->KsMicCoord[2].wYCoord = -100; // mic elements are 200 mm apart pMAG->KsMicCoord[2].wZCoord = 0; pMAG->KsMicCoord[2].wVerticalAngle = 0; pMAG->KsMicCoord[2].wHorizontalAngle = -MicArray_180_Degrees; pMAG->KsMicCoord[3].usType = (USHORT)KSMICARRAY_MICTYPE_CARDIOID; pMAG->KsMicCoord[3].wXCoord = 0; pMAG->KsMicCoord[3].wYCoord = 100; // mic elements are 200 mm apart pMAG->KsMicCoord[3].wZCoord = 0; pMAG->KsMicCoord[3].wVerticalAngle = 0; pMAG->KsMicCoord[3].wHorizontalAngle = -MicArray_180_Degrees; } ntStatus = STATUS_SUCCESS; } } } } } return ntStatus; } //============================================================================= NTSTATUS CMicArrayMiniportTopology::PropertyHandlerJackDescription ( _In_ PPCPROPERTY_REQUEST PropertyRequest ) /*++ Routine Description: Handles ( KSPROPSETID_Jack, KSPROPERTY_JACK_DESCRIPTION ) Arguments: PropertyRequest - Return Value: NT status code. --*/ { PAGED_CODE(); ASSERT(PropertyRequest); DPF_ENTER(("[PropertyHandlerJackDescription]")); NTSTATUS ntStatus = STATUS_INVALID_DEVICE_REQUEST; ULONG nPinId = (ULONG)-1; if (PropertyRequest->InstanceSize >= sizeof(ULONG)) { nPinId = *(PULONG(PropertyRequest->Instance)); if (nPinId == KSPIN_TOPO_MIC_ELEMENTS) { if (PropertyRequest->Verb & KSPROPERTY_TYPE_BASICSUPPORT) { ntStatus = PropertyHandler_BasicSupport ( PropertyRequest, KSPROPERTY_TYPE_BASICSUPPORT | KSPROPERTY_TYPE_GET, VT_ILLEGAL ); } else { ULONG cbNeeded = sizeof(KSMULTIPLE_ITEM) + sizeof(KSJACK_DESCRIPTION); if (PropertyRequest->ValueSize == 0) { PropertyRequest->ValueSize = cbNeeded; ntStatus = STATUS_BUFFER_OVERFLOW; } else if (PropertyRequest->ValueSize < cbNeeded) { ntStatus = STATUS_BUFFER_TOO_SMALL; } else { if (PropertyRequest->Verb & KSPROPERTY_TYPE_GET) { PKSMULTIPLE_ITEM pMI = (PKSMULTIPLE_ITEM)PropertyRequest->Value; PKSJACK_DESCRIPTION pDesc = (PKSJACK_DESCRIPTION)(pMI+1); pMI->Size = cbNeeded; pMI->Count = 1; pDesc->ChannelMapping = 0; // Don't specify channel mask for array mic pDesc->Color = 0x00000000; // Black. This is an integrated device pDesc->ConnectionType = eConnTypeUnknown; // Integrated. pDesc->GenLocation = eGenLocPrimaryBox; pDesc->GeoLocation = IsFront() ? eGeoLocFront : (IsBack() ? eGeoLocRear : eGeoLocNotApplicable); pDesc->PortConnection = ePortConnIntegratedDevice; pDesc->IsConnected = TRUE; // This is an integrated device, so it's always "connected" ntStatus = STATUS_SUCCESS; } } } } } return ntStatus; } //============================================================================= NTSTATUS CMicArrayMiniportTopology::PropertyHandlerJackDescription2 ( _In_ PPCPROPERTY_REQUEST PropertyRequest ) /*++ Routine Description: Handles ( KSPROPSETID_Jack, KSPROPERTY_JACK_DESCRIPTION2 ) Arguments: PropertyRequest - Return Value: NT status code. --*/ { PAGED_CODE(); ASSERT(PropertyRequest); DPF_ENTER(("[PropertyHandlerJackDescription2]")); NTSTATUS ntStatus = STATUS_INVALID_DEVICE_REQUEST; ULONG nPinId = (ULONG)-1; if (PropertyRequest->InstanceSize >= sizeof(ULONG)) { nPinId = *(PULONG(PropertyRequest->Instance)); if (nPinId == KSPIN_TOPO_MIC_ELEMENTS) { if (PropertyRequest->Verb & KSPROPERTY_TYPE_BASICSUPPORT) { ntStatus = PropertyHandler_BasicSupport ( PropertyRequest, KSPROPERTY_TYPE_BASICSUPPORT | KSPROPERTY_TYPE_GET, VT_ILLEGAL ); } else { ULONG cbNeeded = sizeof(KSMULTIPLE_ITEM) + sizeof(KSJACK_DESCRIPTION2); if (PropertyRequest->ValueSize == 0) { PropertyRequest->ValueSize = cbNeeded; ntStatus = STATUS_BUFFER_OVERFLOW; } else if (PropertyRequest->ValueSize < cbNeeded) { ntStatus = STATUS_BUFFER_TOO_SMALL; } else { if (PropertyRequest->Verb & KSPROPERTY_TYPE_GET) { PKSMULTIPLE_ITEM pMI = (PKSMULTIPLE_ITEM)PropertyRequest->Value; PKSJACK_DESCRIPTION2 pDesc = (PKSJACK_DESCRIPTION2)(pMI+1); pMI->Size = cbNeeded; pMI->Count = 1; RtlZeroMemory(pDesc, sizeof(KSJACK_DESCRIPTION2)); // // Specifies the lower 16 bits of the DWORD parameter. This parameter indicates whether // the jack is currently active, streaming, idle, or hardware not ready. // pDesc->DeviceStateInfo = 0; // // From MSDN: // "If an audio device lacks jack presence detection, the IsConnected member of // the KSJACK_DESCRIPTION structure must always be set to TRUE. To remove the // ambiguity that results from this dual meaning of the TRUE value for IsConnected, // a client application can call IKsJackDescription2::GetJackDescription2 to read // the JackCapabilities flag of the KSJACK_DESCRIPTION2 structure. If this flag has // the JACKDESC2_PRESENCE_DETECT_CAPABILITY bit set, it indicates that the endpoint // does in fact support jack presence detection. In that case, the return value of // the IsConnected member can be interpreted to accurately reflect the insertion status // of the jack." // // Bit definitions: // 0x00000001 - JACKDESC2_PRESENCE_DETECT_CAPABILITY // 0x00000002 - JACKDESC2_DYNAMIC_FORMAT_CHANGE_CAPABILITY // pDesc->JackCapabilities = 0; ntStatus = STATUS_SUCCESS; } } } } } return ntStatus; } //============================================================================= NTSTATUS PropertyHandler_MicArrayTopoFilter ( _In_ PPCPROPERTY_REQUEST PropertyRequest ) /*++ Routine Description: Redirects property request to miniport object Arguments: PropertyRequest - Return Value: NT status code. --*/ { PAGED_CODE(); ASSERT(PropertyRequest); DPF_ENTER(("[PropertyHandler_MicArrayTopoFilter]")); // PropertryRequest structure is filled by portcls. // MajorTarget is a pointer to miniport object for miniports. // NTSTATUS ntStatus = STATUS_INVALID_DEVICE_REQUEST; PCMicArrayMiniportTopology pMiniport = (PCMicArrayMiniportTopology)PropertyRequest->MajorTarget; if (IsEqualGUIDAligned(*PropertyRequest->PropertyItem->Set, KSPROPSETID_Audio)) { if (PropertyRequest->PropertyItem->Id == KSPROPERTY_AUDIO_MIC_ARRAY_GEOMETRY) { ntStatus = pMiniport->PropertyHandlerMicArrayGeometry(PropertyRequest); } } else if (IsEqualGUIDAligned(*PropertyRequest->PropertyItem->Set, KSPROPSETID_Jack)) { if (PropertyRequest->PropertyItem->Id == KSPROPERTY_JACK_DESCRIPTION) { ntStatus = pMiniport->PropertyHandlerJackDescription(PropertyRequest); } else if (PropertyRequest->PropertyItem->Id == KSPROPERTY_JACK_DESCRIPTION2) { ntStatus = pMiniport->PropertyHandlerJackDescription2(PropertyRequest); } } return ntStatus; } // PropertyHandler_TopoFilter //============================================================================= NTSTATUS PropertyHandler_MicArrayTopology ( _In_ PPCPROPERTY_REQUEST PropertyRequest ) /*++ Routine Description: Redirects property request to miniport object Arguments: PropertyRequest - Return Value: NT status code. --*/ { PAGED_CODE(); ASSERT(PropertyRequest); DPF_ENTER(("[PropertyHandler_MicArrayTopology]")); // PropertryRequest structure is filled by portcls. // MajorTarget is a pointer to miniport object for miniports. // PCMicArrayMiniportTopology pMiniport = (PCMicArrayMiniportTopology)PropertyRequest->MajorTarget; return pMiniport->PropertyHandlerGeneric(PropertyRequest); } // PropertyHandler_MicArrayTopology #pragma code_seg()
Our Services
-
What our customers say about us?
Read our customer testimonials to find out why our clients keep returning for their projects.
View Testimonials